Source code for sympy.functions.combinatorial.factorials

from __future__ import print_function, division

from sympy.core import S, sympify, Dummy, Mod
from sympy.core.function import Function, ArgumentIndexError
from sympy.core.logic import fuzzy_and
from sympy.core.numbers import Integer, pi
from sympy.core.relational import Eq

from sympy.ntheory import sieve

from math import sqrt as _sqrt

from sympy.core.compatibility import reduce, range
from sympy.core.cache import cacheit

from sympy.polys.polytools import poly_from_expr
from sympy.polys.polyerrors import PolificationFailed


class CombinatorialFunction(Function):
    """Base class for combinatorial functions. """

    def _eval_simplify(self, ratio, measure):
        from sympy.simplify.simplify import combsimp
        expr = combsimp(self)
        if measure(expr) <= ratio*measure(self):
            return expr
        return self

###############################################################################
######################## FACTORIAL and MULTI-FACTORIAL ########################
###############################################################################


[docs]class factorial(CombinatorialFunction): """Implementation of factorial function over nonnegative integers. By convention (consistent with the gamma function and the binomial coefficients), factorial of a negative integer is complex infinity. The factorial is very important in combinatorics where it gives the number of ways in which `n` objects can be permuted. It also arises in calculus, probability, number theory, etc. There is strict relation of factorial with gamma function. In fact n! = gamma(n+1) for nonnegative integers. Rewrite of this kind is very useful in case of combinatorial simplification. Computation of the factorial is done using two algorithms. For small arguments a precomputed look up table is used. However for bigger input algorithm Prime-Swing is used. It is the fastest algorithm known and computes n! via prime factorization of special class of numbers, called here the 'Swing Numbers'. Examples ======== >>> from sympy import Symbol, factorial, S >>> n = Symbol('n', integer=True) >>> factorial(0) 1 >>> factorial(7) 5040 >>> factorial(-2) zoo >>> factorial(n) factorial(n) >>> factorial(2*n) factorial(2*n) >>> factorial(S(1)/2) factorial(1/2) See Also ======== factorial2, RisingFactorial, FallingFactorial """ def fdiff(self, argindex=1): from sympy import gamma, polygamma if argindex == 1: return gamma(self.args[0] + 1)*polygamma(0, self.args[0] + 1) else: raise ArgumentIndexError(self, argindex) _small_swing = [ 1, 1, 1, 3, 3, 15, 5, 35, 35, 315, 63, 693, 231, 3003, 429, 6435, 6435, 109395, 12155, 230945, 46189, 969969, 88179, 2028117, 676039, 16900975, 1300075, 35102025, 5014575, 145422675, 9694845, 300540195, 300540195 ] _small_factorials = [] @classmethod def _swing(cls, n): if n < 33: return cls._small_swing[n] else: N, primes = int(_sqrt(n)), [] for prime in sieve.primerange(3, N + 1): p, q = 1, n while True: q //= prime if q > 0: if q & 1 == 1: p *= prime else: break if p > 1: primes.append(p) for prime in sieve.primerange(N + 1, n//3 + 1): if (n // prime) & 1 == 1: primes.append(prime) L_product = R_product = 1 for prime in sieve.primerange(n//2 + 1, n + 1): L_product *= prime for prime in primes: R_product *= prime return L_product*R_product @classmethod def _recursive(cls, n): if n < 2: return 1 else: return (cls._recursive(n//2)**2)*cls._swing(n) @classmethod def eval(cls, n): n = sympify(n) if n.is_Number: if n is S.Zero: return S.One elif n is S.Infinity: return S.Infinity elif n.is_Integer: if n.is_negative: return S.ComplexInfinity else: n = n.p if n < 20: if not cls._small_factorials: result = 1 for i in range(1, 20): result *= i cls._small_factorials.append(result) result = cls._small_factorials[n-1] else: bits = bin(n).count('1') result = cls._recursive(n)*2**(n - bits) return Integer(result) def _eval_rewrite_as_gamma(self, n): from sympy import gamma return gamma(n + 1) def _eval_rewrite_as_Product(self, n): from sympy import Product if n.is_nonnegative and n.is_integer: i = Dummy('i', integer=True) return Product(i, (i, 1, n)) def _eval_is_integer(self): if self.args[0].is_integer and self.args[0].is_nonnegative: return True def _eval_is_positive(self): if self.args[0].is_integer and self.args[0].is_nonnegative: return True def _eval_is_composite(self): x = self.args[0] if x.is_integer: return (x - 3).is_nonnegative def _eval_is_real(self): x = self.args[0] if x.is_nonnegative or x.is_noninteger: return True
[docs]class MultiFactorial(CombinatorialFunction): pass
[docs]class subfactorial(CombinatorialFunction): r"""The subfactorial counts the derangements of n items and is defined for non-negative integers as:: , | 1 for n = 0 !n = { 0 for n = 1 | (n - 1)*(!(n - 1) + !(n - 2)) for n > 1 ` It can also be written as int(round(n!/exp(1))) but the recursive definition with caching is implemented for this function. An interesting analytic expression is the following [2]_ .. math:: !x = \Gamma(x + 1, -1)/e which is valid for non-negative integers x. The above formula is not very useful incase of non-integers. :math:`\Gamma(x + 1, -1)` is single-valued only for integral arguments x, elsewhere on the positive real axis it has an infinite number of branches none of which are real. References ========== .. [1] http://en.wikipedia.org/wiki/Subfactorial .. [2] http://mathworld.wolfram.com/Subfactorial.html Examples ======== >>> from sympy import subfactorial >>> from sympy.abc import n >>> subfactorial(n + 1) subfactorial(n + 1) >>> subfactorial(5) 44 See Also ======== sympy.functions.combinatorial.factorials.factorial, sympy.utilities.iterables.generate_derangements, sympy.functions.special.gamma_functions.uppergamma """ @classmethod @cacheit def _eval(self, n): if not n: return S.One elif n == 1: return S.Zero return (n - 1)*(self._eval(n - 1) + self._eval(n - 2)) @classmethod def eval(cls, arg): if arg.is_Number: if arg.is_Integer and arg.is_nonnegative: return cls._eval(arg) elif arg is S.NaN: return S.NaN elif arg is S.Infinity: return S.Infinity def _eval_is_even(self): if self.args[0].is_odd and self.args[0].is_nonnegative: return True def _eval_is_integer(self): if self.args[0].is_integer and self.args[0].is_nonnegative: return True def _eval_rewrite_as_uppergamma(self, arg): from sympy import uppergamma return uppergamma(arg + 1, -1)/S.Exp1 def _eval_is_nonnegative(self): if self.args[0].is_integer and self.args[0].is_nonnegative: return True def _eval_is_odd(self): if self.args[0].is_even and self.args[0].is_nonnegative: return True
[docs]class factorial2(CombinatorialFunction): """The double factorial n!!, not to be confused with (n!)! The double factorial is defined for nonnegative integers and for odd negative integers as:: , | n*(n - 2)*(n - 4)* ... * 1 for n positive odd n!! = { n*(n - 2)*(n - 4)* ... * 2 for n positive even | 1 for n = 0 | (n+2)!! / (n+2) for n negative odd ` References ========== .. [1] https://en.wikipedia.org/wiki/Double_factorial Examples ======== >>> from sympy import factorial2, var >>> var('n') n >>> factorial2(n + 1) factorial2(n + 1) >>> factorial2(5) 15 >>> factorial2(-1) 1 >>> factorial2(-5) 1/3 See Also ======== factorial, RisingFactorial, FallingFactorial """ @classmethod def eval(cls, arg): # TODO: extend this to complex numbers? if arg.is_Number: if not arg.is_Integer: raise ValueError("argument must be nonnegative integer or negative odd integer") # This implementation is faster than the recursive one # It also avoids "maximum recursion depth exceeded" runtime error if arg.is_nonnegative: if arg.is_even: k = arg / 2 return 2 ** k * factorial(k) return factorial(arg) / factorial2(arg - 1) if arg.is_odd: return arg * (S.NegativeOne) ** ((1 - arg) / 2) / factorial2(-arg) raise ValueError("argument must be nonnegative integer or negative odd integer") def _eval_is_even(self): # Double factorial is even for every positive even input n = self.args[0] if n.is_integer: if n.is_odd: return False if n.is_even: if n.is_positive: return True if n.is_zero: return False def _eval_is_integer(self): # Double factorial is an integer for every nonnegative input, and for # -1 and -3 n = self.args[0] if n.is_integer: if (n + 1).is_nonnegative: return True if n.is_odd: return (n + 3).is_nonnegative def _eval_is_odd(self): # Double factorial is odd for every odd input not smaller than -3, and # for 0 n = self.args[0] if n.is_odd: return (n + 3).is_nonnegative if n.is_even: if n.is_positive: return False if n.is_zero: return True def _eval_is_positive(self): # Double factorial is positive for every nonnegative input, and for # every odd negative input which is of the form -1-4k for an # nonnegative integer k n = self.args[0] if n.is_integer: if (n + 1).is_nonnegative: return True if n.is_odd: return ((n + 1) / 2).is_even def _eval_rewrite_as_gamma(self, n): from sympy import gamma, Piecewise, sqrt return 2**(n/2)*gamma(n/2 + 1) * Piecewise((1, Eq(Mod(n, 2), 0)), (sqrt(2/pi), Eq(Mod(n, 2), 1)))
############################################################################### ######################## RISING and FALLING FACTORIALS ######################## ###############################################################################
[docs]class RisingFactorial(CombinatorialFunction): """Rising factorial (also called Pochhammer symbol) is a double valued function arising in concrete mathematics, hypergeometric functions and series expansions. It is defined by: rf(x, k) = x * (x + 1) * ... * (x + k - 1) where 'x' can be arbitrary expression and 'k' is an integer. For more information check "Concrete mathematics" by Graham, pp. 66 or visit http://mathworld.wolfram.com/RisingFactorial.html page. When x is a polynomial f of a single variable y of order >= 1, rf(x,k) = f(y) * f(y+1) * ... * f(x+k-1) as described in Peter Paule, "Greatest Factorial Factorization and Symbolic Summation", Journal of Symbolic Computation, vol. 20, pp. 235-268, 1995. Examples ======== >>> from sympy import rf, symbols, factorial, ff, binomial >>> from sympy.abc import x >>> n, k = symbols('n k', integer=True) >>> rf(x, 0) 1 >>> rf(1, 5) 120 >>> rf(x, 5) == x*(1 + x)*(2 + x)*(3 + x)*(4 + x) True >>> rf(x**3, 2) Poly(x**6 + 3*x**5 + 3*x**4 + x**3, x, domain='ZZ') Rewrite >>> rf(x, k).rewrite(ff) FallingFactorial(k + x - 1, k) >>> rf(x, k).rewrite(binomial) binomial(k + x - 1, k)*factorial(k) >>> rf(n, k).rewrite(factorial) factorial(k + n - 1)/factorial(n - 1) See Also ======== factorial, factorial2, FallingFactorial References ========== .. [1] https://en.wikipedia.org/wiki/Pochhammer_symbol """ @classmethod def eval(cls, x, k): x = sympify(x) k = sympify(k) if x is S.NaN or k is S.NaN: return S.NaN elif x is S.One: return factorial(k) elif k.is_Integer: if k is S.Zero: return S.One else: if k.is_positive: if x is S.Infinity: return S.Infinity elif x is S.NegativeInfinity: if k.is_odd: return S.NegativeInfinity else: return S.Infinity else: try: F, opt = poly_from_expr(x) except PolificationFailed: return reduce(lambda r, i: r*(x + i), range(0, int(k)), 1) if len(opt.gens) > 1 or F.degree() <= 1: return reduce(lambda r, i: r*(x + i), range(0, int(k)), 1) else: v = opt.gens[0] return reduce(lambda r, i: r*(F.subs(v, v + i).expand()), range(0, int(k)), 1) else: if x is S.Infinity: return S.Infinity elif x is S.NegativeInfinity: return S.Infinity else: try: F, opt = poly_from_expr(x) except PolificationFailed: return 1/reduce(lambda r, i: r*(x - i), range(1, abs(int(k)) + 1), 1) if len(opt.gens) > 1 or F.degree() <= 1: return 1/reduce(lambda r, i: r*(x - i), range(1, abs(int(k)) + 1), 1) else: v = opt.gens[0] return 1/reduce(lambda r, i: r*(F.subs(v, v - i).expand()), range(1, abs(int(k)) + 1), 1) def _eval_rewrite_as_gamma(self, x, k): from sympy import gamma return gamma(x + k) / gamma(x) def _eval_rewrite_as_FallingFactorial(self, x, k): return FallingFactorial(x + k - 1, k) def _eval_rewrite_as_factorial(self, x, k): if x.is_integer and k.is_integer: return factorial(k + x - 1) / factorial(x - 1) def _eval_rewrite_as_binomial(self, x, k): if k.is_integer: return factorial(k) * binomial(x + k - 1, k) def _eval_is_integer(self): return fuzzy_and((self.args[0].is_integer, self.args[1].is_integer, self.args[1].is_nonnegative)) def _sage_(self): import sage.all as sage return sage.rising_factorial(self.args[0]._sage_(), self.args[1]._sage_())
[docs]class FallingFactorial(CombinatorialFunction): """Falling factorial (related to rising factorial) is a double valued function arising in concrete mathematics, hypergeometric functions and series expansions. It is defined by ff(x, k) = x * (x-1) * ... * (x - k+1) where 'x' can be arbitrary expression and 'k' is an integer. For more information check "Concrete mathematics" by Graham, pp. 66 or visit http://mathworld.wolfram.com/FallingFactorial.html page. When x is a polynomial f of a single variable y of order >= 1, ff(x,k) = f(y) * f(y-1) * ... * f(x-k+1) as described in Peter Paule, "Greatest Factorial Factorization and Symbolic Summation", Journal of Symbolic Computation, vol. 20, pp. 235-268, 1995. >>> from sympy import ff, factorial, rf, gamma, polygamma, binomial, symbols >>> from sympy.abc import x, k >>> n, m = symbols('n m', integer=True) >>> ff(x, 0) 1 >>> ff(5, 5) 120 >>> ff(x, 5) == x*(x-1)*(x-2)*(x-3)*(x-4) True >>> ff(x**2, 2) Poly(x**4 - 2*x**3 + x**2, x, domain='ZZ') >>> ff(n, n) factorial(n) Rewrite >>> ff(x, k).rewrite(gamma) (-1)**k*gamma(k - x)/gamma(-x) >>> ff(x, k).rewrite(rf) RisingFactorial(-k + x + 1, k) >>> ff(x, m).rewrite(binomial) binomial(x, m)*factorial(m) >>> ff(n, m).rewrite(factorial) factorial(n)/factorial(-m + n) See Also ======== factorial, factorial2, RisingFactorial References ========== .. [1] http://mathworld.wolfram.com/FallingFactorial.html """ @classmethod def eval(cls, x, k): x = sympify(x) k = sympify(k) if x is S.NaN or k is S.NaN: return S.NaN elif k.is_integer and x == k: return factorial(x) elif k.is_Integer: if k is S.Zero: return S.One else: if k.is_positive: if x is S.Infinity: return S.Infinity elif x is S.NegativeInfinity: if k.is_odd: return S.NegativeInfinity else: return S.Infinity else: try: F, opt = poly_from_expr(x) except PolificationFailed: return reduce(lambda r, i: r*(x - i), range(0, int(k)), 1) if len(opt.gens) > 1 or F.degree() <= 1: return reduce(lambda r, i: r*(x - i), range(0, int(k)), 1) else: v = opt.gens[0] return reduce(lambda r, i: r*(F.subs(v, v - i).expand()), range(0, int(k)), 1) else: if x is S.Infinity: return S.Infinity elif x is S.NegativeInfinity: return S.Infinity else: try: F, opt = poly_from_expr(x) except PolificationFailed: return 1/reduce(lambda r, i: r*(x + i), range(1, abs(int(k)) + 1), 1) if len(opt.gens) > 1 or F.degree() <= 1: return 1/reduce(lambda r, i: r*(x + i), range(1, abs(int(k)) + 1), 1) else: v = opt.gens[0] return 1/reduce(lambda r, i: r*(F.subs(v, v + i).expand()), range(1, abs(int(k)) + 1), 1) def _eval_rewrite_as_gamma(self, x, k): from sympy import gamma return (-1)**k*gamma(k - x) / gamma(-x) def _eval_rewrite_as_RisingFactorial(self, x, k): return rf(x - k + 1, k) def _eval_rewrite_as_binomial(self, x, k): if k.is_integer: return factorial(k) * binomial(x, k) def _eval_rewrite_as_factorial(self, x, k): if x.is_integer and k.is_integer: return factorial(x) / factorial(x - k) def _eval_is_integer(self): return fuzzy_and((self.args[0].is_integer, self.args[1].is_integer, self.args[1].is_nonnegative)) def _sage_(self): import sage.all as sage return sage.falling_factorial(self.args[0]._sage_(), self.args[1]._sage_())
rf = RisingFactorial ff = FallingFactorial ############################################################################### ########################### BINOMIAL COEFFICIENTS ############################# ###############################################################################
[docs]class binomial(CombinatorialFunction): """Implementation of the binomial coefficient. It can be defined in two ways depending on its desired interpretation: C(n,k) = n!/(k!(n-k)!) or C(n, k) = ff(n, k)/k! First, in a strict combinatorial sense it defines the number of ways we can choose 'k' elements from a set of 'n' elements. In this case both arguments are nonnegative integers and binomial is computed using an efficient algorithm based on prime factorization. The other definition is generalization for arbitrary 'n', however 'k' must also be nonnegative. This case is very useful when evaluating summations. For the sake of convenience for negative 'k' this function will return zero no matter what valued is the other argument. To expand the binomial when n is a symbol, use either expand_func() or expand(func=True). The former will keep the polynomial in factored form while the latter will expand the polynomial itself. See examples for details. Examples ======== >>> from sympy import Symbol, Rational, binomial, expand_func >>> n = Symbol('n', integer=True, positive=True) >>> binomial(15, 8) 6435 >>> binomial(n, -1) 0 Rows of Pascal's triangle can be generated with the binomial function: >>> for N in range(8): ... print([ binomial(N, i) for i in range(N + 1)]) ... [1] [1, 1] [1, 2, 1] [1, 3, 3, 1] [1, 4, 6, 4, 1] [1, 5, 10, 10, 5, 1] [1, 6, 15, 20, 15, 6, 1] [1, 7, 21, 35, 35, 21, 7, 1] As can a given diagonal, e.g. the 4th diagonal: >>> N = -4 >>> [ binomial(N, i) for i in range(1 - N)] [1, -4, 10, -20, 35] >>> binomial(Rational(5, 4), 3) -5/128 >>> binomial(Rational(-5, 4), 3) -195/128 >>> binomial(n, 3) binomial(n, 3) >>> binomial(n, 3).expand(func=True) n**3/6 - n**2/2 + n/3 >>> expand_func(binomial(n, 3)) n*(n - 2)*(n - 1)/6 """ def fdiff(self, argindex=1): from sympy import polygamma if argindex == 1: # http://functions.wolfram.com/GammaBetaErf/Binomial/20/01/01/ n, k = self.args return binomial(n, k)*(polygamma(0, n + 1) - \ polygamma(0, n - k + 1)) elif argindex == 2: # http://functions.wolfram.com/GammaBetaErf/Binomial/20/01/02/ n, k = self.args return binomial(n, k)*(polygamma(0, n - k + 1) - \ polygamma(0, k + 1)) else: raise ArgumentIndexError(self, argindex) @classmethod def _eval(self, n, k): # n.is_Number and k.is_Integer and k != 1 and n != k if k.is_Integer: if n.is_Integer and n >= 0: n, k = int(n), int(k) if k > n: return S.Zero elif k > n // 2: k = n - k M, result = int(_sqrt(n)), 1 for prime in sieve.primerange(2, n + 1): if prime > n - k: result *= prime elif prime > n // 2: continue elif prime > M: if n % prime < k % prime: result *= prime else: N, K = n, k exp = a = 0 while N > 0: a = int((N % prime) < (K % prime + a)) N, K = N // prime, K // prime exp = a + exp if exp > 0: result *= prime**exp return Integer(result) else: d = result = n - k + 1 for i in range(2, k + 1): d += 1 result *= d result /= i return result @classmethod def eval(cls, n, k): n, k = map(sympify, (n, k)) d = n - k if d.is_zero or k.is_zero: return S.One elif d.is_zero is False: if (k - 1).is_zero: return n elif k.is_negative: return S.Zero elif n.is_integer and n.is_nonnegative and d.is_negative: return S.Zero if k.is_Integer and k > 0 and n.is_Number: return cls._eval(n, k) def _eval_expand_func(self, **hints): """ Function to expand binomial(n,k) when m is positive integer Also, n is self.args[0] and k is self.args[1] while using binomial(n, k) """ n = self.args[0] if n.is_Number: return binomial(*self.args) k = self.args[1] if k.is_Add and n in k.args: k = n - k if k.is_Integer: if k == S.Zero: return S.One elif k < 0: return S.Zero else: n = self.args[0] result = n - k + 1 for i in range(2, k + 1): result *= n - k + i result /= i return result else: return binomial(*self.args) def _eval_rewrite_as_factorial(self, n, k): return factorial(n)/(factorial(k)*factorial(n - k)) def _eval_rewrite_as_gamma(self, n, k): from sympy import gamma return gamma(n + 1)/(gamma(k + 1)*gamma(n - k + 1)) def _eval_rewrite_as_tractable(self, n, k): return self._eval_rewrite_as_gamma(n, k).rewrite('tractable') def _eval_rewrite_as_FallingFactorial(self, n, k): if k.is_integer: return ff(n, k) / factorial(k) def _eval_is_integer(self): n, k = self.args if n.is_integer and k.is_integer: return True elif k.is_integer is False: return False