Source code for sympy.polys.agca.homomorphisms

"""
Computations with homomorphisms of modules and rings.

This module implements classes for representing homomorphisms of rings and
their modules. Instead of instantiating the classes directly, you should use
the function ``homomorphism(from, to, matrix)`` to create homomorphism objects.
"""

from __future__ import print_function, division

from sympy.polys.agca.modules import (Module, FreeModule, QuotientModule,
    SubModule, SubQuotientModule)
from sympy.polys.polyerrors import CoercionFailed
from sympy.core.compatibility import range

# The main computational task for module homomorphisms is kernels.
# For this reason, the concrete classes are organised by domain module type.


[docs]class ModuleHomomorphism(object): """ Abstract base class for module homomoprhisms. Do not instantiate. Instead, use the ``homomorphism`` function: >>> from sympy import QQ >>> from sympy.abc import x >>> from sympy.polys.agca import homomorphism >>> F = QQ.old_poly_ring(x).free_module(2) >>> homomorphism(F, F, [[1, 0], [0, 1]]) Matrix([ [1, 0], : QQ[x]**2 -> QQ[x]**2 [0, 1]]) Attributes: - ring - the ring over which we are considering modules - domain - the domain module - codomain - the codomain module - _ker - cached kernel - _img - cached image Non-implemented methods: - _kernel - _image - _restrict_domain - _restrict_codomain - _quotient_domain - _quotient_codomain - _apply - _mul_scalar - _compose - _add """ def __init__(self, domain, codomain): if not isinstance(domain, Module): raise TypeError('Source must be a module, got %s' % domain) if not isinstance(codomain, Module): raise TypeError('Target must be a module, got %s' % codomain) if domain.ring != codomain.ring: raise ValueError('Source and codomain must be over same ring, ' 'got %s != %s' % (domain, codomain)) self.domain = domain self.codomain = codomain self.ring = domain.ring self._ker = None self._img = None
[docs] def kernel(self): r""" Compute the kernel of ``self``. That is, if ``self`` is the homomorphism `\phi: M \to N`, then compute `ker(\phi) = \{x \in M | \phi(x) = 0\}`. This is a submodule of `M`. >>> from sympy import QQ >>> from sympy.abc import x >>> from sympy.polys.agca import homomorphism >>> F = QQ.old_poly_ring(x).free_module(2) >>> homomorphism(F, F, [[1, 0], [x, 0]]).kernel() <[x, -1]> """ if self._ker is None: self._ker = self._kernel() return self._ker
[docs] def image(self): r""" Compute the image of ``self``. That is, if ``self`` is the homomorphism `\phi: M \to N`, then compute `im(\phi) = \{\phi(x) | x \in M \}`. This is a submodule of `N`. >>> from sympy import QQ >>> from sympy.abc import x >>> from sympy.polys.agca import homomorphism >>> F = QQ.old_poly_ring(x).free_module(2) >>> homomorphism(F, F, [[1, 0], [x, 0]]).image() == F.submodule([1, 0]) True """ if self._img is None: self._img = self._image() return self._img
def _kernel(self): """Compute the kernel of ``self``.""" raise NotImplementedError def _image(self): """Compute the image of ``self``.""" raise NotImplementedError def _restrict_domain(self, sm): """Implementation of domain restriction.""" raise NotImplementedError def _restrict_codomain(self, sm): """Implementation of codomain restriction.""" raise NotImplementedError def _quotient_domain(self, sm): """Implementation of domain quotient.""" raise NotImplementedError def _quotient_codomain(self, sm): """Implementation of codomain quotient.""" raise NotImplementedError
[docs] def restrict_domain(self, sm): """ Return ``self``, with the domain restricted to ``sm``. Here ``sm`` has to be a submodule of ``self.domain``. >>> from sympy import QQ >>> from sympy.abc import x >>> from sympy.polys.agca import homomorphism >>> F = QQ.old_poly_ring(x).free_module(2) >>> h = homomorphism(F, F, [[1, 0], [x, 0]]) >>> h Matrix([ [1, x], : QQ[x]**2 -> QQ[x]**2 [0, 0]]) >>> h.restrict_domain(F.submodule([1, 0])) Matrix([ [1, x], : <[1, 0]> -> QQ[x]**2 [0, 0]]) This is the same as just composing on the right with the submodule inclusion: >>> h * F.submodule([1, 0]).inclusion_hom() Matrix([ [1, x], : <[1, 0]> -> QQ[x]**2 [0, 0]]) """ if not self.domain.is_submodule(sm): raise ValueError('sm must be a submodule of %s, got %s' % (self.domain, sm)) if sm == self.domain: return self return self._restrict_domain(sm)
[docs] def restrict_codomain(self, sm): """ Return ``self``, with codomain restricted to to ``sm``. Here ``sm`` has to be a submodule of ``self.codomain`` containing the image. >>> from sympy import QQ >>> from sympy.abc import x >>> from sympy.polys.agca import homomorphism >>> F = QQ.old_poly_ring(x).free_module(2) >>> h = homomorphism(F, F, [[1, 0], [x, 0]]) >>> h Matrix([ [1, x], : QQ[x]**2 -> QQ[x]**2 [0, 0]]) >>> h.restrict_codomain(F.submodule([1, 0])) Matrix([ [1, x], : QQ[x]**2 -> <[1, 0]> [0, 0]]) """ if not sm.is_submodule(self.image()): raise ValueError('the image %s must contain sm, got %s' % (self.image(), sm)) if sm == self.codomain: return self return self._restrict_codomain(sm)
[docs] def quotient_domain(self, sm): """ Return ``self`` with domain replaced by ``domain/sm``. Here ``sm`` must be a submodule of ``self.kernel()``. >>> from sympy import QQ >>> from sympy.abc import x >>> from sympy.polys.agca import homomorphism >>> F = QQ.old_poly_ring(x).free_module(2) >>> h = homomorphism(F, F, [[1, 0], [x, 0]]) >>> h Matrix([ [1, x], : QQ[x]**2 -> QQ[x]**2 [0, 0]]) >>> h.quotient_domain(F.submodule([-x, 1])) Matrix([ [1, x], : QQ[x]**2/<[-x, 1]> -> QQ[x]**2 [0, 0]]) """ if not self.kernel().is_submodule(sm): raise ValueError('kernel %s must contain sm, got %s' % (self.kernel(), sm)) if sm.is_zero(): return self return self._quotient_domain(sm)
[docs] def quotient_codomain(self, sm): """ Return ``self`` with codomain replaced by ``codomain/sm``. Here ``sm`` must be a submodule of ``self.codomain``. >>> from sympy import QQ >>> from sympy.abc import x >>> from sympy.polys.agca import homomorphism >>> F = QQ.old_poly_ring(x).free_module(2) >>> h = homomorphism(F, F, [[1, 0], [x, 0]]) >>> h Matrix([ [1, x], : QQ[x]**2 -> QQ[x]**2 [0, 0]]) >>> h.quotient_codomain(F.submodule([1, 1])) Matrix([ [1, x], : QQ[x]**2 -> QQ[x]**2/<[1, 1]> [0, 0]]) This is the same as composing with the quotient map on the left: >>> (F/[(1, 1)]).quotient_hom() * h Matrix([ [1, x], : QQ[x]**2 -> QQ[x]**2/<[1, 1]> [0, 0]]) """ if not self.codomain.is_submodule(sm): raise ValueError('sm must be a submodule of codomain %s, got %s' % (self.codomain, sm)) if sm.is_zero(): return self return self._quotient_codomain(sm)
def _apply(self, elem): """Apply ``self`` to ``elem``.""" raise NotImplementedError def __call__(self, elem): return self.codomain.convert(self._apply(self.domain.convert(elem))) def _compose(self, oth): """ Compose ``self`` with ``oth``, that is, return the homomorphism obtained by first applying then ``self``, then ``oth``. (This method is private since in this syntax, it is non-obvious which homomorphism is executed first.) """ raise NotImplementedError def _mul_scalar(self, c): """Scalar multiplication. ``c`` is guaranteed in self.ring.""" raise NotImplementedError def _add(self, oth): """ Homomorphism addition. ``oth`` is guaranteed to be a homomorphism with same domain/codomain. """ raise NotImplementedError def _check_hom(self, oth): """Helper to check that oth is a homomorphism with same domain/codomain.""" if not isinstance(oth, ModuleHomomorphism): return False return oth.domain == self.domain and oth.codomain == self.codomain def __mul__(self, oth): if isinstance(oth, ModuleHomomorphism) and self.domain == oth.codomain: return oth._compose(self) try: return self._mul_scalar(self.ring.convert(oth)) except CoercionFailed: return NotImplemented # NOTE: _compose will never be called from rmul __rmul__ = __mul__ def __div__(self, oth): try: return self._mul_scalar(1/self.ring.convert(oth)) except CoercionFailed: return NotImplemented __truediv__ = __div__ def __add__(self, oth): if self._check_hom(oth): return self._add(oth) return NotImplemented def __sub__(self, oth): if self._check_hom(oth): return self._add(oth._mul_scalar(self.ring.convert(-1))) return NotImplemented
[docs] def is_injective(self): """ Return True if ``self`` is injective. That is, check if the elements of the domain are mapped to the same codomain element. >>> from sympy import QQ >>> from sympy.abc import x >>> from sympy.polys.agca import homomorphism >>> F = QQ.old_poly_ring(x).free_module(2) >>> h = homomorphism(F, F, [[1, 0], [x, 0]]) >>> h.is_injective() False >>> h.quotient_domain(h.kernel()).is_injective() True """ return self.kernel().is_zero()
[docs] def is_surjective(self): """ Return True if ``self`` is surjective. That is, check if every element of the codomain has at least one preimage. >>> from sympy import QQ >>> from sympy.abc import x >>> from sympy.polys.agca import homomorphism >>> F = QQ.old_poly_ring(x).free_module(2) >>> h = homomorphism(F, F, [[1, 0], [x, 0]]) >>> h.is_surjective() False >>> h.restrict_codomain(h.image()).is_surjective() True """ return self.image() == self.codomain
[docs] def is_isomorphism(self): """ Return True if ``self`` is an isomorphism. That is, check if every element of the codomain has precisely one preimage. Equivalently, ``self`` is both injective and surjective. >>> from sympy import QQ >>> from sympy.abc import x >>> from sympy.polys.agca import homomorphism >>> F = QQ.old_poly_ring(x).free_module(2) >>> h = homomorphism(F, F, [[1, 0], [x, 0]]) >>> h = h.restrict_codomain(h.image()) >>> h.is_isomorphism() False >>> h.quotient_domain(h.kernel()).is_isomorphism() True """ return self.is_injective() and self.is_surjective()
[docs] def is_zero(self): """ Return True if ``self`` is a zero morphism. That is, check if every element of the domain is mapped to zero under self. >>> from sympy import QQ >>> from sympy.abc import x >>> from sympy.polys.agca import homomorphism >>> F = QQ.old_poly_ring(x).free_module(2) >>> h = homomorphism(F, F, [[1, 0], [x, 0]]) >>> h.is_zero() False >>> h.restrict_domain(F.submodule()).is_zero() True >>> h.quotient_codomain(h.image()).is_zero() True """ return self.image().is_zero()
def __eq__(self, oth): try: return (self - oth).is_zero() except TypeError: return False def __ne__(self, oth): return not (self == oth)
class MatrixHomomorphism(ModuleHomomorphism): """ Helper class for all homomoprhisms which are expressed via a matrix. That is, for such homomorphisms ``domain`` is contained in a module generated by finitely many elements `e_1, \dots, e_n`, so that the homomorphism is determined uniquely by its action on the `e_i`. It can thus be represented as a vector of elements of the codomain module, or potentially a supermodule of the codomain module (and hence conventionally as a matrix, if there is a similar interpretation for elements of the codomain module). Note that this class does *not* assume that the `e_i` freely generate a submodule, nor that ``domain`` is even all of this submodule. It exists only to unify the interface. Do not instantiate. Attributes: - matrix - the list of images determining the homomorphism. NOTE: the elements of matrix belong to either self.codomain or self.codomain.container Still non-implemented methods: - kernel - _apply """ def __init__(self, domain, codomain, matrix): ModuleHomomorphism.__init__(self, domain, codomain) if len(matrix) != domain.rank: raise ValueError('Need to provide %s elements, got %s' % (domain.rank, len(matrix))) converter = self.codomain.convert if isinstance(self.codomain, (SubModule, SubQuotientModule)): converter = self.codomain.container.convert self.matrix = tuple(converter(x) for x in matrix) def _sympy_matrix(self): """Helper function which returns a sympy matrix ``self.matrix``.""" from sympy.matrices import Matrix c = lambda x: x if isinstance(self.codomain, (QuotientModule, SubQuotientModule)): c = lambda x: x.data return Matrix([[self.ring.to_sympy(y) for y in c(x)] for x in self.matrix]).T def __repr__(self): lines = repr(self._sympy_matrix()).split('\n') t = " : %s -> %s" % (self.domain, self.codomain) s = ' '*len(t) n = len(lines) for i in range(n // 2): lines[i] += s lines[n // 2] += t for i in range(n//2 + 1, n): lines[i] += s return '\n'.join(lines) def _restrict_domain(self, sm): """Implementation of domain restriction.""" return SubModuleHomomorphism(sm, self.codomain, self.matrix) def _restrict_codomain(self, sm): """Implementation of codomain restriction.""" return self.__class__(self.domain, sm, self.matrix) def _quotient_domain(self, sm): """Implementation of domain quotient.""" return self.__class__(self.domain/sm, self.codomain, self.matrix) def _quotient_codomain(self, sm): """Implementation of codomain quotient.""" Q = self.codomain/sm converter = Q.convert if isinstance(self.codomain, SubModule): converter = Q.container.convert return self.__class__(self.domain, self.codomain/sm, [converter(x) for x in self.matrix]) def _add(self, oth): return self.__class__(self.domain, self.codomain, [x + y for x, y in zip(self.matrix, oth.matrix)]) def _mul_scalar(self, c): return self.__class__(self.domain, self.codomain, [c*x for x in self.matrix]) def _compose(self, oth): return self.__class__(self.domain, oth.codomain, [oth(x) for x in self.matrix]) class FreeModuleHomomorphism(MatrixHomomorphism): """ Concrete class for homomorphisms with domain a free module or a quotient thereof. Do not instantiate; the constructor does not check that your data is well defined. Use the ``homomorphism`` function instead: >>> from sympy import QQ >>> from sympy.abc import x >>> from sympy.polys.agca import homomorphism >>> F = QQ.old_poly_ring(x).free_module(2) >>> homomorphism(F, F, [[1, 0], [0, 1]]) Matrix([ [1, 0], : QQ[x]**2 -> QQ[x]**2 [0, 1]]) """ def _apply(self, elem): if isinstance(self.domain, QuotientModule): elem = elem.data return sum(x * e for x, e in zip(elem, self.matrix)) def _image(self): return self.codomain.submodule(*self.matrix) def _kernel(self): # The domain is either a free module or a quotient thereof. # It does not matter if it is a quotient, because that won't increase # the kernel. # Our generators {e_i} are sent to the matrix entries {b_i}. # The kernel is essentially the syzygy module of these {b_i}. syz = self.image().syzygy_module() return self.domain.submodule(*syz.gens) class SubModuleHomomorphism(MatrixHomomorphism): """ Concrete class for homomorphism with domain a submodule of a free module or a quotient thereof. Do not instantiate; the constructor does not check that your data is well defined. Use the ``homomorphism`` function instead: >>> from sympy import QQ >>> from sympy.abc import x >>> from sympy.polys.agca import homomorphism >>> M = QQ.old_poly_ring(x).free_module(2)*x >>> homomorphism(M, M, [[1, 0], [0, 1]]) Matrix([ [1, 0], : <[x, 0], [0, x]> -> <[x, 0], [0, x]> [0, 1]]) """ def _apply(self, elem): if isinstance(self.domain, SubQuotientModule): elem = elem.data return sum(x * e for x, e in zip(elem, self.matrix)) def _image(self): return self.codomain.submodule(*[self(x) for x in self.domain.gens]) def _kernel(self): syz = self.image().syzygy_module() return self.domain.submodule( *[sum(xi*gi for xi, gi in zip(s, self.domain.gens)) for s in syz.gens])
[docs]def homomorphism(domain, codomain, matrix): r""" Create a homomorphism object. This function tries to build a homomorphism from ``domain`` to ``codomain`` via the matrix ``matrix``. Examples ======== >>> from sympy import QQ >>> from sympy.abc import x >>> from sympy.polys.agca import homomorphism >>> R = QQ.old_poly_ring(x) >>> T = R.free_module(2) If ``domain`` is a free module generated by `e_1, \dots, e_n`, then ``matrix`` should be an n-element iterable `(b_1, \dots, b_n)` where the `b_i` are elements of ``codomain``. The constructed homomorphism is the unique homomorphism sending `e_i` to `b_i`. >>> F = R.free_module(2) >>> h = homomorphism(F, T, [[1, x], [x**2, 0]]) >>> h Matrix([ [1, x**2], : QQ[x]**2 -> QQ[x]**2 [x, 0]]) >>> h([1, 0]) [1, x] >>> h([0, 1]) [x**2, 0] >>> h([1, 1]) [x**2 + 1, x] If ``domain`` is a submodule of a free module, them ``matrix`` determines a homomoprhism from the containing free module to ``codomain``, and the homomorphism returned is obtained by restriction to ``domain``. >>> S = F.submodule([1, 0], [0, x]) >>> homomorphism(S, T, [[1, x], [x**2, 0]]) Matrix([ [1, x**2], : <[1, 0], [0, x]> -> QQ[x]**2 [x, 0]]) If ``domain`` is a (sub)quotient `N/K`, then ``matrix`` determines a homomorphism from `N` to ``codomain``. If the kernel contains `K`, this homomorphism descends to ``domain`` and is returned; otherwise an exception is raised. >>> homomorphism(S/[(1, 0)], T, [0, [x**2, 0]]) Matrix([ [0, x**2], : <[1, 0] + <[1, 0]>, [0, x] + <[1, 0]>, [1, 0] + <[1, 0]>> -> QQ[x]**2 [0, 0]]) >>> homomorphism(S/[(0, x)], T, [0, [x**2, 0]]) Traceback (most recent call last): ... ValueError: kernel <[1, 0], [0, 0]> must contain sm, got <[0,x]> """ def freepres(module): """ Return a tuple ``(F, S, Q, c)`` where ``F`` is a free module, ``S`` is a submodule of ``F``, and ``Q`` a submodule of ``S``, such that ``module = S/Q``, and ``c`` is a conversion function. """ if isinstance(module, FreeModule): return module, module, module.submodule(), lambda x: module.convert(x) if isinstance(module, QuotientModule): return (module.base, module.base, module.killed_module, lambda x: module.convert(x).data) if isinstance(module, SubQuotientModule): return (module.base.container, module.base, module.killed_module, lambda x: module.container.convert(x).data) # an ordinary submodule return (module.container, module, module.submodule(), lambda x: module.container.convert(x)) SF, SS, SQ, _ = freepres(domain) TF, TS, TQ, c = freepres(codomain) # NOTE this is probably a bit inefficient (redundant checks) return FreeModuleHomomorphism(SF, TF, [c(x) for x in matrix] ).restrict_domain(SS).restrict_codomain(TS ).quotient_codomain(TQ).quotient_domain(SQ)