Source code for sympy.polys.domains.gmpyrationalfield
"""Implementaton of :class:`GMPYRationalField` class. """
from __future__ import print_function, division
from sympy.polys.domains.rationalfield import RationalField
from sympy.polys.domains.groundtypes import (
GMPYRational, SymPyRational,
gmpy_numer, gmpy_denom, gmpy_factorial, gmpy_qdiv,
)
from sympy.polys.polyerrors import CoercionFailed
from sympy.utilities import public
@public
[docs]class GMPYRationalField(RationalField):
"""Rational field based on GMPY mpq class. """
dtype = GMPYRational
zero = dtype(0)
one = dtype(1)
tp = type(one)
alias = 'QQ_gmpy'
def __init__(self):
pass
def get_ring(self):
"""Returns ring associated with ``self``. """
from sympy.polys.domains import GMPYIntegerRing
return GMPYIntegerRing()
def to_sympy(self, a):
"""Convert `a` to a SymPy object. """
return SymPyRational(int(gmpy_numer(a)),
int(gmpy_denom(a)))
def from_sympy(self, a):
"""Convert SymPy's Integer to `dtype`. """
if a.is_Rational:
return GMPYRational(a.p, a.q)
elif a.is_Float:
from sympy.polys.domains import RR
return GMPYRational(*RR.to_rational(a))
else:
raise CoercionFailed("expected `Rational` object, got %s" % a)
def from_ZZ_python(K1, a, K0):
"""Convert a Python `int` object to `dtype`. """
return GMPYRational(a)
def from_QQ_python(K1, a, K0):
"""Convert a Python `Fraction` object to `dtype`. """
return GMPYRational(a.numerator, a.denominator)
def from_ZZ_gmpy(K1, a, K0):
"""Convert a GMPY `mpz` object to `dtype`. """
return GMPYRational(a)
def from_QQ_gmpy(K1, a, K0):
"""Convert a GMPY `mpq` object to `dtype`. """
return a
def from_RealField(K1, a, K0):
"""Convert a mpmath `mpf` object to `dtype`. """
return GMPYRational(*K0.to_rational(a))
def exquo(self, a, b):
"""Exact quotient of `a` and `b`, implies `__div__`. """
return GMPYRational(gmpy_qdiv(a, b))
def quo(self, a, b):
"""Quotient of `a` and `b`, implies `__div__`. """
return GMPYRational(gmpy_qdiv(GMPYRational(a), GMPYRational(b)))
def rem(self, a, b):
"""Remainder of `a` and `b`, implies nothing. """
return self.zero
def div(self, a, b):
"""Division of `a` and `b`, implies `__div__`. """
return GMPYRational(gmpy_qdiv(a, b)), self.zero
def numer(self, a):
"""Returns numerator of `a`. """
return a.numerator
def denom(self, a):
"""Returns denominator of `a`. """
return a.denominator
def factorial(self, a):
"""Returns factorial of `a`. """
return GMPYRational(gmpy_factorial(int(a)))