"""
A Printer for generating executable code.
The most important function here is srepr that returns a string so that the
relation eval(srepr(expr))=expr holds in an appropriate environment.
"""
from __future__ import print_function, division
from sympy.core.function import AppliedUndef
from .printer import Printer
import mpmath.libmp as mlib
from mpmath.libmp import prec_to_dps, repr_dps
from sympy.core.compatibility import range
[docs]class ReprPrinter(Printer):
printmethod = "_sympyrepr"
_default_settings = {
"order": None
}
[docs] def reprify(self, args, sep):
"""
Prints each item in `args` and joins them with `sep`.
"""
return sep.join([self.doprint(item) for item in args])
[docs] def emptyPrinter(self, expr):
"""
The fallback printer.
"""
if isinstance(expr, str):
return expr
elif hasattr(expr, "__srepr__"):
return expr.__srepr__()
elif hasattr(expr, "args") and hasattr(expr.args, "__iter__"):
l = []
for o in expr.args:
l.append(self._print(o))
return expr.__class__.__name__ + '(%s)' % ', '.join(l)
elif hasattr(expr, "__module__") and hasattr(expr, "__name__"):
return "<'%s.%s'>" % (expr.__module__, expr.__name__)
else:
return str(expr)
def _print_Add(self, expr, order=None):
args = self._as_ordered_terms(expr, order=order)
args = map(self._print, args)
return "Add(%s)" % ", ".join(args)
def _print_Cycle(self, expr):
return expr.__repr__()
def _print_Function(self, expr):
r = self._print(expr.func)
r += '(%s)' % ', '.join([self._print(a) for a in expr.args])
return r
def _print_FunctionClass(self, expr):
if issubclass(expr, AppliedUndef):
return 'Function(%r)' % (expr.__name__)
else:
return expr.__name__
def _print_Half(self, expr):
return 'Rational(1, 2)'
def _print_RationalConstant(self, expr):
return str(expr)
def _print_AtomicExpr(self, expr):
return str(expr)
def _print_NumberSymbol(self, expr):
return str(expr)
def _print_Integer(self, expr):
return 'Integer(%i)' % expr.p
def _print_list(self, expr):
return "[%s]" % self.reprify(expr, ", ")
def _print_MatrixBase(self, expr):
# special case for some empty matrices
if (expr.rows == 0) ^ (expr.cols == 0):
return '%s(%s, %s, %s)' % (expr.__class__.__name__,
self._print(expr.rows),
self._print(expr.cols),
self._print([]))
l = []
for i in range(expr.rows):
l.append([])
for j in range(expr.cols):
l[-1].append(expr[i, j])
return '%s(%s)' % (expr.__class__.__name__, self._print(l))
_print_SparseMatrix = \
_print_MutableSparseMatrix = \
_print_ImmutableSparseMatrix = \
_print_Matrix = \
_print_DenseMatrix = \
_print_MutableDenseMatrix = \
_print_ImmutableMatrix = \
_print_ImmutableDenseMatrix = \
_print_MatrixBase
def _print_BooleanTrue(self, expr):
return "S.true"
def _print_BooleanFalse(self, expr):
return "S.false"
def _print_NaN(self, expr):
return "nan"
def _print_Mul(self, expr, order=None):
terms = expr.args
if self.order != 'old':
args = expr._new_rawargs(*terms).as_ordered_factors()
else:
args = terms
args = map(self._print, args)
return "Mul(%s)" % ", ".join(args)
def _print_Rational(self, expr):
return 'Rational(%s, %s)' % (self._print(expr.p), self._print(expr.q))
def _print_PythonRational(self, expr):
return "%s(%d, %d)" % (expr.__class__.__name__, expr.p, expr.q)
def _print_Fraction(self, expr):
return 'Fraction(%s, %s)' % (self._print(expr.numerator), self._print(expr.denominator))
def _print_Float(self, expr):
dps = prec_to_dps(expr._prec)
r = mlib.to_str(expr._mpf_, repr_dps(expr._prec))
return "%s('%s', prec=%i)" % (expr.__class__.__name__, r, dps)
def _print_Sum2(self, expr):
return "Sum2(%s, (%s, %s, %s))" % (self._print(expr.f), self._print(expr.i),
self._print(expr.a), self._print(expr.b))
def _print_Symbol(self, expr):
d = expr._assumptions.generator
if d == {}:
return "%s(%s)" % (expr.__class__.__name__, self._print(expr.name))
else:
attr = ['%s=%s' % (k, v) for k, v in d.items()]
return "%s(%s, %s)" % (expr.__class__.__name__,
self._print(expr.name), ', '.join(attr))
def _print_Predicate(self, expr):
return "%s(%s)" % (expr.__class__.__name__, self._print(expr.name))
def _print_AppliedPredicate(self, expr):
return "%s(%s, %s)" % (expr.__class__.__name__, expr.func, expr.arg)
def _print_str(self, expr):
return repr(expr)
def _print_tuple(self, expr):
if len(expr) == 1:
return "(%s,)" % self._print(expr[0])
else:
return "(%s)" % self.reprify(expr, ", ")
def _print_WildFunction(self, expr):
return "%s('%s')" % (expr.__class__.__name__, expr.name)
def _print_AlgebraicNumber(self, expr):
return "%s(%s, %s)" % (expr.__class__.__name__,
self._print(expr.root), self._print(expr.coeffs()))
def _print_PolyRing(self, ring):
return "%s(%s, %s, %s)" % (ring.__class__.__name__,
self._print(ring.symbols), self._print(ring.domain), self._print(ring.order))
def _print_FracField(self, field):
return "%s(%s, %s, %s)" % (field.__class__.__name__,
self._print(field.symbols), self._print(field.domain), self._print(field.order))
def _print_PolyElement(self, poly):
terms = list(poly.terms())
terms.sort(key=poly.ring.order, reverse=True)
return "%s(%s, %s)" % (poly.__class__.__name__, self._print(poly.ring), self._print(terms))
def _print_FracElement(self, frac):
numer_terms = list(frac.numer.terms())
numer_terms.sort(key=frac.field.order, reverse=True)
denom_terms = list(frac.denom.terms())
denom_terms.sort(key=frac.field.order, reverse=True)
numer = self._print(numer_terms)
denom = self._print(denom_terms)
return "%s(%s, %s, %s)" % (frac.__class__.__name__, self._print(frac.field), numer, denom)
[docs]def srepr(expr, **settings):
"""return expr in repr form"""
return ReprPrinter(settings).doprint(expr)