Source code for sympy.solvers.inequalities

"""Tools for solving inequalities and systems of inequalities. """

from __future__ import print_function, division

from sympy.core import Symbol, Dummy, sympify
from sympy.core.compatibility import iterable
from sympy.sets import Interval
from sympy.core.relational import Relational, Eq, Ge, Lt
from sympy.sets.sets import FiniteSet, Union
from sympy.core.singleton import S

from sympy.functions import Abs
from sympy.logic import And
from sympy.polys import Poly, PolynomialError, parallel_poly_from_expr
from sympy.polys.polyutils import _nsort
from sympy.utilities.misc import filldedent

[docs]def solve_poly_inequality(poly, rel): """Solve a polynomial inequality with rational coefficients. Examples ======== >>> from sympy import Poly >>> from sympy.abc import x >>> from sympy.solvers.inequalities import solve_poly_inequality >>> solve_poly_inequality(Poly(x, x, domain='ZZ'), '==') [{0}] >>> solve_poly_inequality(Poly(x**2 - 1, x, domain='ZZ'), '!=') [(-oo, -1), (-1, 1), (1, oo)] >>> solve_poly_inequality(Poly(x**2 - 1, x, domain='ZZ'), '==') [{-1}, {1}] See Also ======== solve_poly_inequalities """ if not isinstance(poly, Poly): raise ValueError( 'For efficiency reasons, `poly` should be a Poly instance') if poly.is_number: t = Relational(poly.as_expr(), 0, rel) if t is S.true: return [S.Reals] elif t is S.false: return [S.EmptySet] else: raise NotImplementedError( "could not determine truth value of %s" % t) reals, intervals = poly.real_roots(multiple=False), [] if rel == '==': for root, _ in reals: interval = Interval(root, root) intervals.append(interval) elif rel == '!=': left = S.NegativeInfinity for right, _ in reals + [(S.Infinity, 1)]: interval = Interval(left, right, True, True) intervals.append(interval) left = right else: if poly.LC() > 0: sign = +1 else: sign = -1 eq_sign, equal = None, False if rel == '>': eq_sign = +1 elif rel == '<': eq_sign = -1 elif rel == '>=': eq_sign, equal = +1, True elif rel == '<=': eq_sign, equal = -1, True else: raise ValueError("'%s' is not a valid relation" % rel) right, right_open = S.Infinity, True for left, multiplicity in reversed(reals): if multiplicity % 2: if sign == eq_sign: intervals.insert( 0, Interval(left, right, not equal, right_open)) sign, right, right_open = -sign, left, not equal else: if sign == eq_sign and not equal: intervals.insert( 0, Interval(left, right, True, right_open)) right, right_open = left, True elif sign != eq_sign and equal: intervals.insert(0, Interval(left, left)) if sign == eq_sign: intervals.insert( 0, Interval(S.NegativeInfinity, right, True, right_open)) return intervals
def solve_poly_inequalities(polys): """Solve polynomial inequalities with rational coefficients. Examples ======== >>> from sympy.solvers.inequalities import solve_poly_inequalities >>> from sympy.polys import Poly >>> from sympy.abc import x >>> solve_poly_inequalities((( ... Poly(x**2 - 3), ">"), ( ... Poly(-x**2 + 1), ">"))) (-oo, -sqrt(3)) U (-1, 1) U (sqrt(3), oo) """ from sympy import Union return Union(*[solve_poly_inequality(*p) for p in polys])
[docs]def solve_rational_inequalities(eqs): """Solve a system of rational inequalities with rational coefficients. Examples ======== >>> from sympy.abc import x >>> from sympy import Poly >>> from sympy.solvers.inequalities import solve_rational_inequalities >>> solve_rational_inequalities([[ ... ((Poly(-x + 1), Poly(1, x)), '>='), ... ((Poly(-x + 1), Poly(1, x)), '<=')]]) {1} >>> solve_rational_inequalities([[ ... ((Poly(x), Poly(1, x)), '!='), ... ((Poly(-x + 1), Poly(1, x)), '>=')]]) (-oo, 0) U (0, 1] See Also ======== solve_poly_inequality """ result = S.EmptySet for _eqs in eqs: if not _eqs: continue global_intervals = [Interval(S.NegativeInfinity, S.Infinity)] for (numer, denom), rel in _eqs: numer_intervals = solve_poly_inequality(numer*denom, rel) denom_intervals = solve_poly_inequality(denom, '==') intervals = [] for numer_interval in numer_intervals: for global_interval in global_intervals: interval = numer_interval.intersect(global_interval) if interval is not S.EmptySet: intervals.append(interval) global_intervals = intervals intervals = [] for global_interval in global_intervals: for denom_interval in denom_intervals: global_interval -= denom_interval if global_interval is not S.EmptySet: intervals.append(global_interval) global_intervals = intervals if not global_intervals: break for interval in global_intervals: result = result.union(interval) return result
[docs]def reduce_rational_inequalities(exprs, gen, relational=True): """Reduce a system of rational inequalities with rational coefficients. Examples ======== >>> from sympy import Poly, Symbol >>> from sympy.solvers.inequalities import reduce_rational_inequalities >>> x = Symbol('x', real=True) >>> reduce_rational_inequalities([[x**2 <= 0]], x) Eq(x, 0) >>> reduce_rational_inequalities([[x + 2 > 0]], x) And(-2 < x, x < oo) >>> reduce_rational_inequalities([[(x + 2, ">")]], x) And(-2 < x, x < oo) >>> reduce_rational_inequalities([[x + 2]], x) Eq(x, -2) """ exact = True eqs = [] solution = S.Reals if exprs else S.EmptySet for _exprs in exprs: _eqs = [] for expr in _exprs: if isinstance(expr, tuple): expr, rel = expr else: if expr.is_Relational: expr, rel = expr.lhs - expr.rhs, expr.rel_op else: expr, rel = expr, '==' if expr is S.true: numer, denom, rel = S.Zero, S.One, '==' elif expr is S.false: numer, denom, rel = S.One, S.One, '==' else: numer, denom = expr.together().as_numer_denom() try: (numer, denom), opt = parallel_poly_from_expr( (numer, denom), gen) except PolynomialError: raise PolynomialError(filldedent(''' only polynomials and rational functions are supported in this context''')) if not opt.domain.is_Exact: numer, denom, exact = numer.to_exact(), denom.to_exact(), False domain = opt.domain.get_exact() if not (domain.is_ZZ or domain.is_QQ): expr = numer/denom expr = Relational(expr, 0, rel) solution &= solve_univariate_inequality(expr, gen, relational=False) else: _eqs.append(((numer, denom), rel)) if _eqs: eqs.append(_eqs) if eqs: solution &= solve_rational_inequalities(eqs) if not exact: solution = solution.evalf() if relational: solution = solution.as_relational(gen) return solution
[docs]def reduce_abs_inequality(expr, rel, gen): """Reduce an inequality with nested absolute values. Examples ======== >>> from sympy import Abs, Symbol >>> from sympy.solvers.inequalities import reduce_abs_inequality >>> x = Symbol('x', real=True) >>> reduce_abs_inequality(Abs(x - 5) - 3, '<', x) And(2 < x, x < 8) >>> reduce_abs_inequality(Abs(x + 2)*3 - 13, '<', x) And(-19/3 < x, x < 7/3) See Also ======== reduce_abs_inequalities """ if gen.is_real is False: raise TypeError(filldedent(''' can't solve inequalities with absolute values containing non-real variables''')) def _bottom_up_scan(expr): exprs = [] if expr.is_Add or expr.is_Mul: op = expr.func for arg in expr.args: _exprs = _bottom_up_scan(arg) if not exprs: exprs = _exprs else: args = [] for expr, conds in exprs: for _expr, _conds in _exprs: args.append((op(expr, _expr), conds + _conds)) exprs = args elif expr.is_Pow: n = expr.exp if not n.is_Integer: raise ValueError("Only Integer Powers are allowed on Abs.") _exprs = _bottom_up_scan(expr.base) for expr, conds in _exprs: exprs.append((expr**n, conds)) elif isinstance(expr, Abs): _exprs = _bottom_up_scan(expr.args[0]) for expr, conds in _exprs: exprs.append(( expr, conds + [Ge(expr, 0)])) exprs.append((-expr, conds + [Lt(expr, 0)])) else: exprs = [(expr, [])] return exprs exprs = _bottom_up_scan(expr) mapping = {'<': '>', '<=': '>='} inequalities = [] for expr, conds in exprs: if rel not in mapping.keys(): expr = Relational( expr, 0, rel) else: expr = Relational(-expr, 0, mapping[rel]) inequalities.append([expr] + conds) return reduce_rational_inequalities(inequalities, gen)
[docs]def reduce_abs_inequalities(exprs, gen): """Reduce a system of inequalities with nested absolute values. Examples ======== >>> from sympy import Abs, Symbol >>> from sympy.abc import x >>> from sympy.solvers.inequalities import reduce_abs_inequalities >>> x = Symbol('x', real=True) >>> reduce_abs_inequalities([(Abs(3*x - 5) - 7, '<'), ... (Abs(x + 25) - 13, '>')], x) And(-2/3 < x, Or(And(-12 < x, x < oo), And(-oo < x, x < -38)), x < 4) >>> reduce_abs_inequalities([(Abs(x - 4) + Abs(3*x - 5) - 7, '<')], x) And(1/2 < x, x < 4) See Also ======== reduce_abs_inequality """ return And(*[ reduce_abs_inequality(expr, rel, gen) for expr, rel in exprs ])
[docs]def solve_univariate_inequality(expr, gen, relational=True): """Solves a real univariate inequality. Examples ======== >>> from sympy.solvers.inequalities import solve_univariate_inequality >>> from sympy.core.symbol import Symbol >>> x = Symbol('x') >>> solve_univariate_inequality(x**2 >= 4, x) Or(And(-oo < x, x <= -2), And(2 <= x, x < oo)) >>> solve_univariate_inequality(x**2 >= 4, x, relational=False) (-oo, -2] U [2, oo) """ from sympy.solvers.solvers import solve, denoms # This keeps the function independent of the assumptions about `gen`. # `solveset` makes sure this function is called only when the domain is # real. d = Dummy(real=True) expr = expr.subs(gen, d) _gen = gen gen = d if expr is S.true: rv = S.Reals elif expr is S.false: rv = S.EmptySet else: e = expr.lhs - expr.rhs parts = n, d = e.as_numer_denom() if all(i.is_polynomial(gen) for i in parts): solns = solve(n, gen, check=False) singularities = solve(d, gen, check=False) else: solns = solve(e, gen, check=False) singularities = [] for d in denoms(e): singularities.extend(solve(d, gen)) include_x = expr.func(0, 0) def valid(x): v = e.subs(gen, x) try: r = expr.func(v, 0) except TypeError: r = S.false if r in (S.true, S.false): return r if v.is_real is False: return S.false else: v = v.n(2) if v.is_comparable: return expr.func(v, 0) return S.false start = S.NegativeInfinity sol_sets = [S.EmptySet] try: reals = _nsort(set(solns + singularities), separated=True)[0] except NotImplementedError: raise NotImplementedError('sorting of these roots is not supported') for x in reals: end = x if end in [S.NegativeInfinity, S.Infinity]: if valid(S(0)): sol_sets.append(Interval(start, S.Infinity, True, True)) break pt = ((start + end)/2 if start is not S.NegativeInfinity else (end/2 if end.is_positive else (2*end if end.is_negative else end - 1))) if valid(pt): sol_sets.append(Interval(start, end, True, True)) if x in singularities: singularities.remove(x) elif include_x: sol_sets.append(FiniteSet(x)) start = end end = S.Infinity # in case start == -oo then there were no solutions so we just # check a point between -oo and oo (e.g. 0) else pick a point # past the last solution (which is start after the end of the # for-loop above pt = (0 if start is S.NegativeInfinity else (start/2 if start.is_negative else (2*start if start.is_positive else start + 1))) if valid(pt): sol_sets.append(Interval(start, end, True, True)) rv = Union(*sol_sets).subs(gen, _gen) return rv if not relational else rv.as_relational(_gen)
def _solve_inequality(ie, s): """ A hacky replacement for solve, since the latter only works for univariate inequalities. """ expr = ie.lhs - ie.rhs try: p = Poly(expr, s) if p.degree() != 1: raise NotImplementedError except (PolynomialError, NotImplementedError): try: return reduce_rational_inequalities([[ie]], s) except PolynomialError: return solve_univariate_inequality(ie, s) a, b = p.all_coeffs() if a.is_positive or ie.rel_op in ('!=', '=='): return ie.func(s, -b/a) elif a.is_negative: return ie.reversed.func(s, -b/a) else: raise NotImplementedError def _reduce_inequalities(inequalities, symbols): # helper for reduce_inequalities poly_part, abs_part = {}, {} other = [] for inequality in inequalities: expr, rel = inequality.lhs, inequality.rel_op # rhs is 0 # check for gens using atoms which is more strict than free_symbols to # guard against EX domain which won't be handled by # reduce_rational_inequalities gens = expr.atoms(Symbol) if len(gens) == 1: gen = gens.pop() else: common = expr.free_symbols & symbols if len(common) == 1: gen = common.pop() other.append(_solve_inequality(Relational(expr, 0, rel), gen)) continue else: raise NotImplementedError(filldedent(''' inequality has more than one symbol of interest''')) if expr.is_polynomial(gen): poly_part.setdefault(gen, []).append((expr, rel)) else: components = expr.find(lambda u: u.has(gen) and ( u.is_Function or u.is_Pow and not u.exp.is_Integer)) if components and all(isinstance(i, Abs) for i in components): abs_part.setdefault(gen, []).append((expr, rel)) else: other.append(_solve_inequality(Relational(expr, 0, rel), gen)) poly_reduced = [] abs_reduced = [] for gen, exprs in poly_part.items(): poly_reduced.append(reduce_rational_inequalities([exprs], gen)) for gen, exprs in abs_part.items(): abs_reduced.append(reduce_abs_inequalities(exprs, gen)) return And(*(poly_reduced + abs_reduced + other))
[docs]def reduce_inequalities(inequalities, symbols=[]): """Reduce a system of inequalities with rational coefficients. Examples ======== >>> from sympy import sympify as S, Symbol >>> from sympy.abc import x, y >>> from sympy.solvers.inequalities import reduce_inequalities >>> reduce_inequalities(0 <= x + 3, []) And(-3 <= x, x < oo) >>> reduce_inequalities(0 <= x + y*2 - 1, [x]) x >= -2*y + 1 """ if not iterable(inequalities): inequalities = [inequalities] inequalities = [sympify(i) for i in inequalities] gens = set().union(*[i.free_symbols for i in inequalities]) if not iterable(symbols): symbols = [symbols] symbols = (set(symbols) or gens) & gens if any(i.is_real is False for i in symbols): raise TypeError(filldedent(''' inequalities cannot contain symbols that are not real.''')) # make vanilla symbol real recast = dict([(i, Dummy(i.name, real=True)) for i in gens if i.is_real is None]) inequalities = [i.xreplace(recast) for i in inequalities] symbols = {i.xreplace(recast) for i in symbols} # prefilter keep = [] for i in inequalities: if isinstance(i, Relational): i = i.func(i.lhs.as_expr() - i.rhs.as_expr(), 0) elif i not in (True, False): i = Eq(i, 0) if i == True: continue elif i == False: return S.false if i.lhs.is_number: raise NotImplementedError( "could not determine truth value of %s" % i) keep.append(i) inequalities = keep del keep # solve system rv = _reduce_inequalities(inequalities, symbols) # restore original symbols and return return rv.xreplace({v: k for k, v in recast.items()})