"""
Finite Discrete Random Variables - Prebuilt variable types
Contains
========
FiniteRV
DiscreteUniform
Die
Bernoulli
Coin
Binomial
Hypergeometric
"""
from __future__ import print_function, division
from sympy.core.compatibility import as_int, range
from sympy.core.logic import fuzzy_not, fuzzy_and
from sympy.stats.frv import (SingleFinitePSpace, SingleFiniteDistribution)
from sympy.concrete.summations import Sum
from sympy import (S, sympify, Rational, binomial, cacheit, Integer,
Dict, Basic, KroneckerDelta, Dummy)
__all__ = ['FiniteRV', 'DiscreteUniform', 'Die', 'Bernoulli', 'Coin',
'Binomial', 'Hypergeometric']
def rv(name, cls, *args):
density = cls(*args)
return SingleFinitePSpace(name, density).value
class FiniteDistributionHandmade(SingleFiniteDistribution):
@property
def dict(self):
return self.args[0]
def __new__(cls, density):
density = Dict(density)
return Basic.__new__(cls, density)
[docs]def FiniteRV(name, density):
"""
Create a Finite Random Variable given a dict representing the density.
Returns a RandomSymbol.
>>> from sympy.stats import FiniteRV, P, E
>>> density = {0: .1, 1: .2, 2: .3, 3: .4}
>>> X = FiniteRV('X', density)
>>> E(X)
2.00000000000000
>>> P(X >= 2)
0.700000000000000
"""
return rv(name, FiniteDistributionHandmade, density)
class DiscreteUniformDistribution(SingleFiniteDistribution):
@property
def p(self):
return Rational(1, len(self.args))
@property
@cacheit
def dict(self):
return dict((k, self.p) for k in self.set)
@property
def set(self):
return self.args
def pdf(self, x):
if x in self.args:
return self.p
else:
return S.Zero
class DieDistribution(SingleFiniteDistribution):
_argnames = ('sides',)
def __new__(cls, sides):
sides_sym = sympify(sides)
if fuzzy_not(fuzzy_and((sides_sym.is_integer, sides_sym.is_positive))):
raise ValueError("'sides' must be a positive integer.")
else:
return super(DieDistribution, cls).__new__(cls, sides)
@property
@cacheit
def dict(self):
sides = as_int(self.sides)
return super(DieDistribution, self).dict
@property
def set(self):
return list(map(Integer, list(range(1, self.sides + 1))))
def pdf(self, x):
x = sympify(x)
if x.is_number:
if x.is_Integer and x >= 1 and x <= self.sides:
return Rational(1, self.sides)
return S.Zero
if x.is_Symbol:
i = Dummy('i', integer=True, positive=True)
return Sum(KroneckerDelta(x, i)/self.sides, (i, 1, self.sides))
raise ValueError("'x' expected as an argument of type 'number' or 'symbol', "
"not %s" % (type(x)))
[docs]def Die(name, sides=6):
"""
Create a Finite Random Variable representing a fair die.
Returns a RandomSymbol.
>>> from sympy.stats import Die, density
>>> D6 = Die('D6', 6) # Six sided Die
>>> density(D6).dict
{1: 1/6, 2: 1/6, 3: 1/6, 4: 1/6, 5: 1/6, 6: 1/6}
>>> D4 = Die('D4', 4) # Four sided Die
>>> density(D4).dict
{1: 1/4, 2: 1/4, 3: 1/4, 4: 1/4}
"""
return rv(name, DieDistribution, sides)
class BernoulliDistribution(SingleFiniteDistribution):
_argnames = ('p', 'succ', 'fail')
@property
@cacheit
def dict(self):
return {self.succ: self.p, self.fail: 1 - self.p}
[docs]def Bernoulli(name, p, succ=1, fail=0):
"""
Create a Finite Random Variable representing a Bernoulli process.
Returns a RandomSymbol
>>> from sympy.stats import Bernoulli, density
>>> from sympy import S
>>> X = Bernoulli('X', S(3)/4) # 1-0 Bernoulli variable, probability = 3/4
>>> density(X).dict
{0: 1/4, 1: 3/4}
>>> X = Bernoulli('X', S.Half, 'Heads', 'Tails') # A fair coin toss
>>> density(X).dict
{Heads: 1/2, Tails: 1/2}
"""
return rv(name, BernoulliDistribution, p, succ, fail)
[docs]def Coin(name, p=S.Half):
"""
Create a Finite Random Variable representing a Coin toss.
Probability p is the chance of gettings "Heads." Half by default
Returns a RandomSymbol.
>>> from sympy.stats import Coin, density
>>> from sympy import Rational
>>> C = Coin('C') # A fair coin toss
>>> density(C).dict
{H: 1/2, T: 1/2}
>>> C2 = Coin('C2', Rational(3, 5)) # An unfair coin
>>> density(C2).dict
{H: 3/5, T: 2/5}
"""
return rv(name, BernoulliDistribution, p, 'H', 'T')
class BinomialDistribution(SingleFiniteDistribution):
_argnames = ('n', 'p', 'succ', 'fail')
def __new__(cls, *args):
n = args[BinomialDistribution._argnames.index('n')]
p = args[BinomialDistribution._argnames.index('p')]
n_sym = sympify(n)
p_sym = sympify(p)
if fuzzy_not(fuzzy_and((n_sym.is_integer, n_sym.is_nonnegative))):
raise ValueError("'n' must be positive integer. n = %s." % str(n))
elif fuzzy_not(fuzzy_and((p_sym.is_nonnegative, (p_sym - 1).is_nonpositive))):
raise ValueError("'p' must be: 0 <= p <= 1 . p = %s" % str(p))
else:
return super(BinomialDistribution, cls).__new__(cls, *args)
@property
@cacheit
def dict(self):
n, p, succ, fail = self.n, self.p, self.succ, self.fail
n = as_int(n)
return dict((k*succ + (n - k)*fail,
binomial(n, k) * p**k * (1 - p)**(n - k)) for k in range(0, n + 1))
[docs]def Binomial(name, n, p, succ=1, fail=0):
"""
Create a Finite Random Variable representing a binomial distribution.
Returns a RandomSymbol.
Examples
========
>>> from sympy.stats import Binomial, density
>>> from sympy import S
>>> X = Binomial('X', 4, S.Half) # Four "coin flips"
>>> density(X).dict
{0: 1/16, 1: 1/4, 2: 3/8, 3: 1/4, 4: 1/16}
"""
return rv(name, BinomialDistribution, n, p, succ, fail)
class HypergeometricDistribution(SingleFiniteDistribution):
_argnames = ('N', 'm', 'n')
@property
@cacheit
def dict(self):
N, m, n = self.N, self.m, self.n
N, m, n = list(map(sympify, (N, m, n)))
density = dict((sympify(k),
Rational(binomial(m, k) * binomial(N - m, n - k),
binomial(N, n)))
for k in range(max(0, n + m - N), min(m, n) + 1))
return density
[docs]def Hypergeometric(name, N, m, n):
"""
Create a Finite Random Variable representing a hypergeometric distribution.
Returns a RandomSymbol.
Examples
========
>>> from sympy.stats import Hypergeometric, density
>>> from sympy import S
>>> X = Hypergeometric('X', 10, 5, 3) # 10 marbles, 5 white (success), 3 draws
>>> density(X).dict
{0: 1/12, 1: 5/12, 2: 5/12, 3: 1/12}
"""
return rv(name, HypergeometricDistribution, N, m, n)
class RademacherDistribution(SingleFiniteDistribution):
@property
@cacheit
def dict(self):
return {-1: S.Half, 1: S.Half}
def Rademacher(name):
"""
Create a Finite Random Variable representing a Rademacher distribution.
Return a RandomSymbol.
Examples
========
>>> from sympy.stats import Rademacher, density
>>> X = Rademacher('X')
>>> density(X).dict
{-1: 1/2, 1: 1/2}
See Also
========
sympy.stats.Bernoulli
References
==========
.. [1] http://en.wikipedia.org/wiki/Rademacher_distribution
"""
return rv(name, RademacherDistribution)