Sparse Matrices¶
SparseMatrix Class Reference¶
-
class
sympy.matrices.sparse.
SparseMatrix
(*args)[source]¶ A sparse matrix (a matrix with a large number of zero elements).
See also
sympy.matrices.dense.Matrix
Examples
>>> from sympy.matrices import SparseMatrix >>> SparseMatrix(2, 2, range(4)) Matrix([ [0, 1], [2, 3]]) >>> SparseMatrix(2, 2, {(1, 1): 2}) Matrix([ [0, 0], [0, 2]])
-
CL
¶ Alternate faster representation
-
LDLdecomposition
()[source]¶ Returns the LDL Decomposition (matrices
L
andD
) of matrixA
, such thatL * D * L.T == A
.A
must be a square, symmetric, positive-definite and non-singular.This method eliminates the use of square root and ensures that all the diagonal entries of L are 1.
Examples
>>> from sympy.matrices import SparseMatrix >>> A = SparseMatrix(((25, 15, -5), (15, 18, 0), (-5, 0, 11))) >>> L, D = A.LDLdecomposition() >>> L Matrix([ [ 1, 0, 0], [ 3/5, 1, 0], [-1/5, 1/3, 1]]) >>> D Matrix([ [25, 0, 0], [ 0, 9, 0], [ 0, 0, 9]]) >>> L * D * L.T == A True
-
RL
¶ Alternate faster representation
-
add
(other)[source]¶ Add two sparse matrices with dictionary representation.
See also
Examples
>>> from sympy.matrices import SparseMatrix, eye, ones >>> SparseMatrix(eye(3)).add(SparseMatrix(ones(3))) Matrix([ [2, 1, 1], [1, 2, 1], [1, 1, 2]]) >>> SparseMatrix(eye(3)).add(-SparseMatrix(eye(3))) Matrix([ [0, 0, 0], [0, 0, 0], [0, 0, 0]])
Only the non-zero elements are stored, so the resulting dictionary that is used to represent the sparse matrix is empty:
>>> _._smat {}
-
applyfunc
(f)[source]¶ Apply a function to each element of the matrix.
Examples
>>> from sympy.matrices import SparseMatrix >>> m = SparseMatrix(2, 2, lambda i, j: i*2+j) >>> m Matrix([ [0, 1], [2, 3]]) >>> m.applyfunc(lambda i: 2*i) Matrix([ [0, 2], [4, 6]])
-
as_mutable
()[source]¶ Returns a mutable version of this matrix.
Examples
>>> from sympy import ImmutableMatrix >>> X = ImmutableMatrix([[1, 2], [3, 4]]) >>> Y = X.as_mutable() >>> Y[1, 1] = 5 # Can set values in Y >>> Y Matrix([ [1, 2], [3, 5]])
-
cholesky
()[source]¶ Returns the Cholesky decomposition L of a matrix A such that L * L.T = A
A must be a square, symmetric, positive-definite and non-singular matrix
Examples
>>> from sympy.matrices import SparseMatrix >>> A = SparseMatrix(((25,15,-5),(15,18,0),(-5,0,11))) >>> A.cholesky() Matrix([ [ 5, 0, 0], [ 3, 3, 0], [-1, 1, 3]]) >>> A.cholesky() * A.cholesky().T == A True
-
col
(j)[source]¶ Returns column j from self as a column vector.
Examples
>>> from sympy.matrices import SparseMatrix >>> a = SparseMatrix(((1, 2), (3, 4))) >>> a.col(0) Matrix([ [1], [3]])
-
col_list
()[source]¶ Returns a column-sorted list of non-zero elements of the matrix.
See also
col_op
,row_list
Examples
>>> from sympy.matrices import SparseMatrix >>> a=SparseMatrix(((1, 2), (3, 4))) >>> a Matrix([ [1, 2], [3, 4]]) >>> a.CL [(0, 0, 1), (1, 0, 3), (0, 1, 2), (1, 1, 4)]
-
extract
(rowsList, colsList)[source]¶ Return a submatrix by specifying a list of rows and columns. Negative indices can be given. All indices must be in the range -n <= i < n where n is the number of rows or columns.
Examples
>>> from sympy import Matrix >>> m = Matrix(4, 3, range(12)) >>> m Matrix([ [0, 1, 2], [3, 4, 5], [6, 7, 8], [9, 10, 11]]) >>> m.extract([0, 1, 3], [0, 1]) Matrix([ [0, 1], [3, 4], [9, 10]])
Rows or columns can be repeated:
>>> m.extract([0, 0, 1], [-1]) Matrix([ [2], [2], [5]])
Every other row can be taken by using range to provide the indices:
>>> m.extract(range(0, m.rows, 2), [-1]) Matrix([ [2], [8]])
RowsList or colsList can also be a list of booleans, in which case the rows or columns corresponding to the True values will be selected:
>>> m.extract([0, 1, 2, 3], [True, False, True]) Matrix([ [0, 2], [3, 5], [6, 8], [9, 11]])
-
has
(*patterns)[source]¶ Test whether any subexpression matches any of the patterns.
Examples
>>> from sympy import SparseMatrix, Float >>> from sympy.abc import x, y >>> A = SparseMatrix(((1, x), (0.2, 3))) >>> A.has(x) True >>> A.has(y) False >>> A.has(Float) True
-
is_hermitian
¶ Checks if the matrix is Hermitian.
In a Hermitian matrix element i,j is the complex conjugate of element j,i.
Examples
>>> from sympy.matrices import SparseMatrix >>> from sympy import I >>> from sympy.abc import x >>> a = SparseMatrix([[1, I], [-I, 1]]) >>> a Matrix([ [ 1, I], [-I, 1]]) >>> a.is_hermitian True >>> a[0, 0] = 2*I >>> a.is_hermitian False >>> a[0, 0] = x >>> a.is_hermitian >>> a[0, 1] = a[1, 0]*I >>> a.is_hermitian False
-
is_symmetric
(simplify=True)[source]¶ Return True if self is symmetric.
Examples
>>> from sympy.matrices import SparseMatrix, eye >>> M = SparseMatrix(eye(3)) >>> M.is_symmetric() True >>> M[0, 2] = 1 >>> M.is_symmetric() False
-
liupc
()[source]¶ Liu’s algorithm, for pre-determination of the Elimination Tree of the given matrix, used in row-based symbolic Cholesky factorization.
References
Symbolic Sparse Cholesky Factorization using Elimination Trees, Jeroen Van Grondelle (1999) http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.39.7582
Examples
>>> from sympy.matrices import SparseMatrix >>> S = SparseMatrix([ ... [1, 0, 3, 2], ... [0, 0, 1, 0], ... [4, 0, 0, 5], ... [0, 6, 7, 0]]) >>> S.liupc() ([[0], [], [0], [1, 2]], [4, 3, 4, 4])
-
multiply
(other)[source]¶ Fast multiplication exploiting the sparsity of the matrix.
See also
Examples
>>> from sympy.matrices import SparseMatrix, ones >>> A, B = SparseMatrix(ones(4, 3)), SparseMatrix(ones(3, 4)) >>> A.multiply(B) == 3*ones(4) True
-
reshape
(rows, cols)[source]¶ Reshape matrix while retaining original size.
Examples
>>> from sympy.matrices import SparseMatrix >>> S = SparseMatrix(4, 2, range(8)) >>> S.reshape(2, 4) Matrix([ [0, 1, 2, 3], [4, 5, 6, 7]])
-
row
(i)[source]¶ Returns column i from self as a row vector.
Examples
>>> from sympy.matrices import SparseMatrix >>> a = SparseMatrix(((1, 2), (3, 4))) >>> a.row(0) Matrix([[1, 2]])
-
row_list
()[source]¶ Returns a row-sorted list of non-zero elements of the matrix.
See also
row_op
,col_list
Examples
>>> from sympy.matrices import SparseMatrix >>> a = SparseMatrix(((1, 2), (3, 4))) >>> a Matrix([ [1, 2], [3, 4]]) >>> a.RL [(0, 0, 1), (0, 1, 2), (1, 0, 3), (1, 1, 4)]
-
row_structure_symbolic_cholesky
()[source]¶ Symbolic cholesky factorization, for pre-determination of the non-zero structure of the Cholesky factororization.
References
Symbolic Sparse Cholesky Factorization using Elimination Trees, Jeroen Van Grondelle (1999) http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.39.7582
Examples
>>> from sympy.matrices import SparseMatrix >>> S = SparseMatrix([ ... [1, 0, 3, 2], ... [0, 0, 1, 0], ... [4, 0, 0, 5], ... [0, 6, 7, 0]]) >>> S.row_structure_symbolic_cholesky() [[0], [], [0], [1, 2]]
-
solve
(rhs, method='LDL')[source]¶ Return solution to self*soln = rhs using given inversion method.
For a list of possible inversion methods, see the .inv() docstring.
-
solve_least_squares
(rhs, method='LDL')[source]¶ Return the least-square fit to the data.
By default the cholesky_solve routine is used (method=’CH’); other methods of matrix inversion can be used. To find out which are available, see the docstring of the .inv() method.
Examples
>>> from sympy.matrices import SparseMatrix, Matrix, ones >>> A = Matrix([1, 2, 3]) >>> B = Matrix([2, 3, 4]) >>> S = SparseMatrix(A.row_join(B)) >>> S Matrix([ [1, 2], [2, 3], [3, 4]])
If each line of S represent coefficients of Ax + By and x and y are [2, 3] then S*xy is:
>>> r = S*Matrix([2, 3]); r Matrix([ [ 8], [13], [18]])
But let’s add 1 to the middle value and then solve for the least-squares value of xy:
>>> xy = S.solve_least_squares(Matrix([8, 14, 18])); xy Matrix([ [ 5/3], [10/3]])
The error is given by S*xy - r:
>>> S*xy - r Matrix([ [1/3], [1/3], [1/3]]) >>> _.norm().n(2) 0.58
If a different xy is used, the norm will be higher:
>>> xy += ones(2, 1)/10 >>> (S*xy - r).norm().n(2) 1.5
-
tolist
()[source]¶ Convert this sparse matrix into a list of nested Python lists.
Examples
>>> from sympy.matrices import SparseMatrix, ones >>> a = SparseMatrix(((1, 2), (3, 4))) >>> a.tolist() [[1, 2], [3, 4]]
When there are no rows then it will not be possible to tell how many columns were in the original matrix:
>>> SparseMatrix(ones(0, 3)).tolist() []
-
-
class
sympy.matrices.sparse.
MutableSparseMatrix
(*args)[source]¶ -
col_del
(k)[source]¶ Delete the given column of the matrix.
See also
Examples
>>> from sympy.matrices import SparseMatrix >>> M = SparseMatrix([[0, 0], [0, 1]]) >>> M Matrix([ [0, 0], [0, 1]]) >>> M.col_del(0) >>> M Matrix([ [0], [1]])
-
col_join
(other)[source]¶ Returns B augmented beneath A (row-wise joining):
[A] [B]
Examples
>>> from sympy import SparseMatrix, Matrix, ones >>> A = SparseMatrix(ones(3)) >>> A Matrix([ [1, 1, 1], [1, 1, 1], [1, 1, 1]]) >>> B = SparseMatrix.eye(3) >>> B Matrix([ [1, 0, 0], [0, 1, 0], [0, 0, 1]]) >>> C = A.col_join(B); C Matrix([ [1, 1, 1], [1, 1, 1], [1, 1, 1], [1, 0, 0], [0, 1, 0], [0, 0, 1]]) >>> C == A.col_join(Matrix(B)) True
Joining along columns is the same as appending rows at the end of the matrix:
>>> C == A.row_insert(A.rows, Matrix(B)) True
-
col_op
(j, f)[source]¶ In-place operation on col j using two-arg functor whose args are interpreted as (self[i, j], i) for i in range(self.rows).
Examples
>>> from sympy.matrices import SparseMatrix >>> M = SparseMatrix.eye(3)*2 >>> M[1, 0] = -1 >>> M.col_op(1, lambda v, i: v + 2*M[i, 0]); M Matrix([ [ 2, 4, 0], [-1, 0, 0], [ 0, 0, 2]])
-
col_swap
(i, j)[source]¶ Swap, in place, columns i and j.
Examples
>>> from sympy.matrices import SparseMatrix >>> S = SparseMatrix.eye(3); S[2, 1] = 2 >>> S.col_swap(1, 0); S Matrix([ [0, 1, 0], [1, 0, 0], [2, 0, 1]])
-
fill
(value)[source]¶ Fill self with the given value.
Notes
Unless many values are going to be deleted (i.e. set to zero) this will create a matrix that is slower than a dense matrix in operations.
Examples
>>> from sympy.matrices import SparseMatrix >>> M = SparseMatrix.zeros(3); M Matrix([ [0, 0, 0], [0, 0, 0], [0, 0, 0]]) >>> M.fill(1); M Matrix([ [1, 1, 1], [1, 1, 1], [1, 1, 1]])
-
row_del
(k)[source]¶ Delete the given row of the matrix.
See also
Examples
>>> from sympy.matrices import SparseMatrix >>> M = SparseMatrix([[0, 0], [0, 1]]) >>> M Matrix([ [0, 0], [0, 1]]) >>> M.row_del(0) >>> M Matrix([[0, 1]])
-
row_join
(other)[source]¶ Returns B appended after A (column-wise augmenting):
[A B]
Examples
>>> from sympy import SparseMatrix, Matrix >>> A = SparseMatrix(((1, 0, 1), (0, 1, 0), (1, 1, 0))) >>> A Matrix([ [1, 0, 1], [0, 1, 0], [1, 1, 0]]) >>> B = SparseMatrix(((1, 0, 0), (0, 1, 0), (0, 0, 1))) >>> B Matrix([ [1, 0, 0], [0, 1, 0], [0, 0, 1]]) >>> C = A.row_join(B); C Matrix([ [1, 0, 1, 1, 0, 0], [0, 1, 0, 0, 1, 0], [1, 1, 0, 0, 0, 1]]) >>> C == A.row_join(Matrix(B)) True
Joining at row ends is the same as appending columns at the end of the matrix:
>>> C == A.col_insert(A.cols, B) True
-
row_op
(i, f)[source]¶ In-place operation on row
i
using two-arg functor whose args are interpreted as(self[i, j], j)
.See also
row
,zip_row_op
,col_op
Examples
>>> from sympy.matrices import SparseMatrix >>> M = SparseMatrix.eye(3)*2 >>> M[0, 1] = -1 >>> M.row_op(1, lambda v, j: v + 2*M[0, j]); M Matrix([ [2, -1, 0], [4, 0, 0], [0, 0, 2]])
-
row_swap
(i, j)[source]¶ Swap, in place, columns i and j.
Examples
>>> from sympy.matrices import SparseMatrix >>> S = SparseMatrix.eye(3); S[2, 1] = 2 >>> S.row_swap(1, 0); S Matrix([ [0, 1, 0], [1, 0, 0], [0, 2, 1]])
-
zip_row_op
(i, k, f)[source]¶ In-place operation on row
i
using two-arg functor whose args are interpreted as(self[i, j], self[k, j])
.Examples
>>> from sympy.matrices import SparseMatrix >>> M = SparseMatrix.eye(3)*2 >>> M[0, 1] = -1 >>> M.zip_row_op(1, 0, lambda v, u: v + 2*u); M Matrix([ [2, -1, 0], [4, 0, 0], [0, 0, 2]])
-
ImmutableSparseMatrix Class Reference¶
-
class
sympy.matrices.immutable.
ImmutableSparseMatrix
(*args)[source]¶ Create an immutable version of a sparse matrix.
Examples
>>> from sympy import eye >>> from sympy.matrices.immutable import ImmutableSparseMatrix >>> ImmutableSparseMatrix(1, 1, {}) Matrix([[0]]) >>> ImmutableSparseMatrix(eye(3)) Matrix([ [1, 0, 0], [0, 1, 0], [0, 0, 1]]) >>> _[0, 0] = 42 Traceback (most recent call last): ... TypeError: Cannot set values of ImmutableSparseMatrix >>> _.shape (3, 3)
-
subs
(*args, **kwargs)¶ Return a new matrix with subs applied to each entry.
Examples
>>> from sympy.abc import x, y >>> from sympy.matrices import SparseMatrix, Matrix >>> SparseMatrix(1, 1, [x]) Matrix([[x]]) >>> _.subs(x, y) Matrix([[y]]) >>> Matrix(_).subs(y, x) Matrix([[x]])
-
xreplace
(rule)¶ Return a new matrix with xreplace applied to each entry.
Examples
>>> from sympy.abc import x, y >>> from sympy.matrices import SparseMatrix, Matrix >>> SparseMatrix(1, 1, [x]) Matrix([[x]]) >>> _.xreplace({x: y}) Matrix([[y]]) >>> Matrix(_).xreplace({y: x}) Matrix([[x]])
-