Parsing input¶
Parsing Functions Reference¶
-
sympy.parsing.sympy_parser.
parse_expr
(s, local_dict=None, transformations=(<function lambda_notation at 0x7eff7290e938>, <function auto_symbol at 0x7eff7290e1b8>, <function auto_number at 0x7eff7290e6e0>, <function factorial_notation at 0x7eff7290e9b0>), global_dict=None, evaluate=True)[source]¶ Converts the string
s
to a SymPy expression, inlocal_dict
Parameters: s : str
The string to parse.
local_dict : dict, optional
A dictionary of local variables to use when parsing.
global_dict : dict, optional
A dictionary of global variables. By default, this is initialized with
from sympy import *
; provide this parameter to override this behavior (for instance, to parse"Q & S"
).transformations : tuple, optional
A tuple of transformation functions used to modify the tokens of the parsed expression before evaluation. The default transformations convert numeric literals into their SymPy equivalents, convert undefined variables into SymPy symbols, and allow the use of standard mathematical factorial notation (e.g.
x!
).evaluate : bool, optional
When False, the order of the arguments will remain as they were in the string and automatic simplification that would normally occur is suppressed. (see examples)
See also
stringify_expr
,eval_expr
,standard_transformations
,implicit_multiplication_application
Examples
>>> from sympy.parsing.sympy_parser import parse_expr >>> parse_expr("1/2") 1/2 >>> type(_) <class 'sympy.core.numbers.Half'> >>> from sympy.parsing.sympy_parser import standard_transformations,\ ... implicit_multiplication_application >>> transformations = (standard_transformations + ... (implicit_multiplication_application,)) >>> parse_expr("2x", transformations=transformations) 2*x
When evaluate=False, some automatic simplifications will not occur:
>>> parse_expr("2**3"), parse_expr("2**3", evaluate=False) (8, 2**3)
In addition the order of the arguments will not be made canonical. This feature allows one to tell exactly how the expression was entered:
>>> a = parse_expr('1 + x', evaluate=False) >>> b = parse_expr('x + 1', evaluate=0) >>> a == b False >>> a.args (1, x) >>> b.args (x, 1)
-
sympy.parsing.sympy_parser.
stringify_expr
(s, local_dict, global_dict, transformations)[source]¶ Converts the string
s
to Python code, inlocal_dict
Generally,
parse_expr
should be used.
-
sympy.parsing.sympy_parser.
eval_expr
(code, local_dict, global_dict)[source]¶ Evaluate Python code generated by
stringify_expr
.Generally,
parse_expr
should be used.
-
sympy.parsing.sympy_tokenize.
tokenize
(readline, tokeneater=<function printtoken>)[source]¶ The tokenize() function accepts two parameters: one representing the input stream, and one providing an output mechanism for tokenize().
The first parameter, readline, must be a callable object which provides the same interface as the readline() method of built-in file objects. Each call to the function should return one line of input as a string.
The second parameter, tokeneater, must also be a callable object. It is called once for each token, with five arguments, corresponding to the tuples generated by generate_tokens().
-
sympy.parsing.sympy_tokenize.
untokenize
(iterable)[source]¶ Transform tokens back into Python source code.
Each element returned by the iterable must be a token sequence with at least two elements, a token number and token value. If only two tokens are passed, the resulting output is poor.
- Round-trip invariant for full input:
- Untokenized source will match input source exactly
Round-trip invariant for limited intput:
# Output text will tokenize the back to the input t1 = [tok[:2] for tok in generate_tokens(f.readline)] newcode = untokenize(t1) readline = iter(newcode.splitlines(1)).next t2 = [tok[:2] for tok in generate_tokens(readline)] if t1 != t2: raise ValueError("t1 should be equal to t2")
-
sympy.parsing.sympy_tokenize.
generate_tokens
(readline)[source]¶ The generate_tokens() generator requires one argment, readline, which must be a callable object which provides the same interface as the readline() method of built-in file objects. Each call to the function should return one line of input as a string. Alternately, readline can be a callable function terminating with StopIteration:
readline = open(myfile).next # Example of alternate readline
The generator produces 5-tuples with these members: the token type; the token string; a 2-tuple (srow, scol) of ints specifying the row and column where the token begins in the source; a 2-tuple (erow, ecol) of ints specifying the row and column where the token ends in the source; and the line on which the token was found. The line passed is the logical line; continuation lines are included.
Parsing Exceptions Reference¶
Parsing Transformations Reference¶
A transformation is a function that accepts the arguments tokens,
local_dict, global_dict
and returns a list of transformed tokens. They can
be used by passing a list of functions to parse_expr()
and are
applied in the order given.
-
sympy.parsing.sympy_parser.
standard_transformations
= (<function lambda_notation at 0x7eff7290e938>, <function auto_symbol at 0x7eff7290e1b8>, <function auto_number at 0x7eff7290e6e0>, <function factorial_notation at 0x7eff7290e9b0>)¶ Standard transformations for
parse_expr()
. Inserts calls toSymbol
,Integer
, and other SymPy datatypes and allows the use of standard factorial notation (e.g.x!
).
-
sympy.parsing.sympy_parser.
split_symbols
(tokens, local_dict, global_dict)¶ Splits symbol names for implicit multiplication.
Intended to let expressions like
xyz
be parsed asx*y*z
. Does not split Greek character names, sotheta
will not becomet*h*e*t*a
. Generally this should be used withimplicit_multiplication
.
-
sympy.parsing.sympy_parser.
split_symbols_custom
(predicate)[source]¶ Creates a transformation that splits symbol names.
predicate
should return True if the symbol name is to be split.For instance, to retain the default behavior but avoid splitting certain symbol names, a predicate like this would work:
>>> from sympy.parsing.sympy_parser import (parse_expr, _token_splittable, ... standard_transformations, implicit_multiplication, ... split_symbols_custom) >>> def can_split(symbol): ... if symbol not in ('list', 'of', 'unsplittable', 'names'): ... return _token_splittable(symbol) ... return False ... >>> transformation = split_symbols_custom(can_split) >>> parse_expr('unsplittable', transformations=standard_transformations + ... (transformation, implicit_multiplication)) unsplittable
-
sympy.parsing.sympy_parser.
implicit_multiplication
(result, local_dict, global_dict)[source]¶ Makes the multiplication operator optional in most cases.
Use this before
implicit_application()
, otherwise expressions likesin 2x
will be parsed asx * sin(2)
rather thansin(2*x)
.Examples
>>> from sympy.parsing.sympy_parser import (parse_expr, ... standard_transformations, implicit_multiplication) >>> transformations = standard_transformations + (implicit_multiplication,) >>> parse_expr('3 x y', transformations=transformations) 3*x*y
-
sympy.parsing.sympy_parser.
implicit_application
(result, local_dict, global_dict)[source]¶ Makes parentheses optional in some cases for function calls.
Use this after
implicit_multiplication()
, otherwise expressions likesin 2x
will be parsed asx * sin(2)
rather thansin(2*x)
.Examples
>>> from sympy.parsing.sympy_parser import (parse_expr, ... standard_transformations, implicit_application) >>> transformations = standard_transformations + (implicit_application,) >>> parse_expr('cot z + csc z', transformations=transformations) cot(z) + csc(z)
-
sympy.parsing.sympy_parser.
function_exponentiation
(tokens, local_dict, global_dict)[source]¶ Allows functions to be exponentiated, e.g.
cos**2(x)
.Examples
>>> from sympy.parsing.sympy_parser import (parse_expr, ... standard_transformations, function_exponentiation) >>> transformations = standard_transformations + (function_exponentiation,) >>> parse_expr('sin**4(x)', transformations=transformations) sin(x)**4
-
sympy.parsing.sympy_parser.
implicit_multiplication_application
(result, local_dict, global_dict)[source]¶ Allows a slightly relaxed syntax.
- Parentheses for single-argument method calls are optional.
- Multiplication is implicit.
- Symbol names can be split (i.e. spaces are not needed between symbols).
- Functions can be exponentiated.
Examples
>>> from sympy.parsing.sympy_parser import (parse_expr, ... standard_transformations, implicit_multiplication_application) >>> parse_expr("10sin**2 x**2 + 3xyz + tan theta", ... transformations=(standard_transformations + ... (implicit_multiplication_application,))) 3*x*y*z + 10*sin(x**2)**2 + tan(theta)
-
sympy.parsing.sympy_parser.
rationalize
(tokens, local_dict, global_dict)[source]¶ Converts floats into
Rational
. Run AFTERauto_number
.
-
sympy.parsing.sympy_parser.
convert_xor
(tokens, local_dict, global_dict)[source]¶ Treats XOR,
^
, as exponentiation,**
.
These are included in
:data:sympy.parsing.sympy_parser.standard_transformations
and generally
don’t need to be manually added by the user.
-
sympy.parsing.sympy_parser.
factorial_notation
(tokens, local_dict, global_dict)[source]¶ Allows standard notation for factorial.